Termination of the given ITRSProblem could successfully be proven:



ITRS
  ↳ ITRStoIDPProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

sieve(nil) → nil
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
Cond_isdiv1(TRUE, x) → TRUE
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(TRUE, x, y, zs) → filter(x, zs)
Cond_nats1(TRUE, x, y) → nil
nats(x, y) → Cond_nats1(>@z(x, y), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
nats(x, y) → Cond_nats(>=@z(y, x), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
if(FALSE, x, y, zs) → cons(y, filter(x, zs))
Cond_nats(TRUE, x, y) → cons(x, nats(+@z(x, 1@z), y))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
filter(x, nil) → nil
sieve(cons(x, ys)) → cons(x, sieve(filter(x, ys)))
Cond_isdiv2(TRUE, x, y) → FALSE
primes(x) → sieve(nats(2@z, x))

The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


Added dependency pairs

↳ ITRS
  ↳ ITRStoIDPProof
IDP
      ↳ UsableRulesProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

sieve(nil) → nil
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
Cond_isdiv1(TRUE, x) → TRUE
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(TRUE, x, y, zs) → filter(x, zs)
Cond_nats1(TRUE, x, y) → nil
nats(x, y) → Cond_nats1(>@z(x, y), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
nats(x, y) → Cond_nats(>=@z(y, x), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
if(FALSE, x, y, zs) → cons(y, filter(x, zs))
Cond_nats(TRUE, x, y) → cons(x, nats(+@z(x, 1@z), y))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
filter(x, nil) → nil
sieve(cons(x, ys)) → cons(x, sieve(filter(x, ys)))
Cond_isdiv2(TRUE, x, y) → FALSE
primes(x) → sieve(nats(2@z, x))

The integer pair graph contains the following rules and edges:

(0): COND_NATS(TRUE, x[0], y[0]) → NATS(+@z(x[0], 1@z), y[0])
(1): NATS(x[1], y[1]) → COND_NATS(>=@z(y[1], x[1]), x[1], y[1])
(2): SIEVE(cons(x[2], ys[2])) → FILTER(x[2], ys[2])
(3): PRIMES(x[3]) → NATS(2@z, x[3])
(4): ISDIV(x[4], y[4]) → COND_ISDIV(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)), x[4], y[4])
(5): IF(FALSE, x[5], y[5], zs[5]) → FILTER(x[5], zs[5])
(6): ISDIV(x[6], 0@z) → COND_ISDIV1(>@z(x[6], 0@z), x[6])
(7): IF(TRUE, x[7], y[7], zs[7]) → FILTER(x[7], zs[7])
(8): ISDIV(x[8], y[8]) → COND_ISDIV2(&&(>@z(x[8], y[8]), >@z(y[8], 0@z)), x[8], y[8])
(9): PRIMES(x[9]) → SIEVE(nats(2@z, x[9]))
(10): FILTER(x[10], cons(y[10], zs[10])) → ISDIV(x[10], y[10])
(11): SIEVE(cons(x[11], ys[11])) → SIEVE(filter(x[11], ys[11]))
(12): FILTER(x[12], cons(y[12], zs[12])) → IF(isdiv(x[12], y[12]), x[12], y[12], zs[12])
(13): NATS(x[13], y[13]) → COND_NATS1(>@z(x[13], y[13]), x[13], y[13])
(14): COND_ISDIV(TRUE, x[14], y[14]) → ISDIV(x[14], -@z(y[14], x[14]))

(0) -> (1), if ((y[0]* y[1])∧(+@z(x[0], 1@z) →* x[1]))


(0) -> (13), if ((y[0]* y[13])∧(+@z(x[0], 1@z) →* x[13]))


(1) -> (0), if ((x[1]* x[0])∧(y[1]* y[0])∧(>=@z(y[1], x[1]) →* TRUE))


(2) -> (10), if ((ys[2]* cons(y[10], zs[10]))∧(x[2]* x[10]))


(2) -> (12), if ((ys[2]* cons(y[12], zs[12]))∧(x[2]* x[12]))


(3) -> (1), if ((x[3]* y[1]))


(3) -> (13), if ((x[3]* y[13]))


(4) -> (14), if ((x[4]* x[14])∧(y[4]* y[14])∧(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)) →* TRUE))


(5) -> (10), if ((zs[5]* cons(y[10], zs[10]))∧(x[5]* x[10]))


(5) -> (12), if ((zs[5]* cons(y[12], zs[12]))∧(x[5]* x[12]))


(7) -> (10), if ((zs[7]* cons(y[10], zs[10]))∧(x[7]* x[10]))


(7) -> (12), if ((zs[7]* cons(y[12], zs[12]))∧(x[7]* x[12]))


(9) -> (2), if ((nats(2@z, x[9]) →* cons(x[2], ys[2])))


(9) -> (11), if ((nats(2@z, x[9]) →* cons(x[11], ys[11])))


(10) -> (4), if ((y[10]* y[4])∧(x[10]* x[4]))


(10) -> (6), if ((y[10]* 0@z)∧(x[10]* x[6]))


(10) -> (8), if ((y[10]* y[8])∧(x[10]* x[8]))


(11) -> (2), if ((filter(x[11], ys[11]) →* cons(x[2], ys[2])))


(11) -> (11), if ((filter(x[11], ys[11]) →* cons(x[11]a, ys[11]a)))


(12) -> (5), if ((zs[12]* zs[5])∧(x[12]* x[5])∧(y[12]* y[5])∧(isdiv(x[12], y[12]) →* FALSE))


(12) -> (7), if ((zs[12]* zs[7])∧(x[12]* x[7])∧(y[12]* y[7])∧(isdiv(x[12], y[12]) →* TRUE))


(14) -> (4), if ((-@z(y[14], x[14]) →* y[4])∧(x[14]* x[4]))


(14) -> (6), if ((-@z(y[14], x[14]) →* 0@z)∧(x[14]* x[6]))


(14) -> (8), if ((-@z(y[14], x[14]) →* y[8])∧(x[14]* x[8]))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
IDP
          ↳ IDependencyGraphProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_isdiv1(TRUE, x) → TRUE
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(TRUE, x, y, zs) → filter(x, zs)
Cond_nats1(TRUE, x, y) → nil
nats(x, y) → Cond_nats1(>@z(x, y), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
nats(x, y) → Cond_nats(>=@z(y, x), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
if(FALSE, x, y, zs) → cons(y, filter(x, zs))
Cond_nats(TRUE, x, y) → cons(x, nats(+@z(x, 1@z), y))
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
filter(x, nil) → nil
Cond_isdiv2(TRUE, x, y) → FALSE

The integer pair graph contains the following rules and edges:

(0): COND_NATS(TRUE, x[0], y[0]) → NATS(+@z(x[0], 1@z), y[0])
(1): NATS(x[1], y[1]) → COND_NATS(>=@z(y[1], x[1]), x[1], y[1])
(2): SIEVE(cons(x[2], ys[2])) → FILTER(x[2], ys[2])
(3): PRIMES(x[3]) → NATS(2@z, x[3])
(4): ISDIV(x[4], y[4]) → COND_ISDIV(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)), x[4], y[4])
(5): IF(FALSE, x[5], y[5], zs[5]) → FILTER(x[5], zs[5])
(6): ISDIV(x[6], 0@z) → COND_ISDIV1(>@z(x[6], 0@z), x[6])
(7): IF(TRUE, x[7], y[7], zs[7]) → FILTER(x[7], zs[7])
(8): ISDIV(x[8], y[8]) → COND_ISDIV2(&&(>@z(x[8], y[8]), >@z(y[8], 0@z)), x[8], y[8])
(9): PRIMES(x[9]) → SIEVE(nats(2@z, x[9]))
(10): FILTER(x[10], cons(y[10], zs[10])) → ISDIV(x[10], y[10])
(11): SIEVE(cons(x[11], ys[11])) → SIEVE(filter(x[11], ys[11]))
(12): FILTER(x[12], cons(y[12], zs[12])) → IF(isdiv(x[12], y[12]), x[12], y[12], zs[12])
(13): NATS(x[13], y[13]) → COND_NATS1(>@z(x[13], y[13]), x[13], y[13])
(14): COND_ISDIV(TRUE, x[14], y[14]) → ISDIV(x[14], -@z(y[14], x[14]))

(0) -> (1), if ((y[0]* y[1])∧(+@z(x[0], 1@z) →* x[1]))


(0) -> (13), if ((y[0]* y[13])∧(+@z(x[0], 1@z) →* x[13]))


(1) -> (0), if ((x[1]* x[0])∧(y[1]* y[0])∧(>=@z(y[1], x[1]) →* TRUE))


(2) -> (10), if ((ys[2]* cons(y[10], zs[10]))∧(x[2]* x[10]))


(2) -> (12), if ((ys[2]* cons(y[12], zs[12]))∧(x[2]* x[12]))


(3) -> (1), if ((x[3]* y[1]))


(3) -> (13), if ((x[3]* y[13]))


(4) -> (14), if ((x[4]* x[14])∧(y[4]* y[14])∧(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)) →* TRUE))


(5) -> (10), if ((zs[5]* cons(y[10], zs[10]))∧(x[5]* x[10]))


(5) -> (12), if ((zs[5]* cons(y[12], zs[12]))∧(x[5]* x[12]))


(7) -> (10), if ((zs[7]* cons(y[10], zs[10]))∧(x[7]* x[10]))


(7) -> (12), if ((zs[7]* cons(y[12], zs[12]))∧(x[7]* x[12]))


(9) -> (2), if ((nats(2@z, x[9]) →* cons(x[2], ys[2])))


(9) -> (11), if ((nats(2@z, x[9]) →* cons(x[11], ys[11])))


(10) -> (4), if ((y[10]* y[4])∧(x[10]* x[4]))


(10) -> (6), if ((y[10]* 0@z)∧(x[10]* x[6]))


(10) -> (8), if ((y[10]* y[8])∧(x[10]* x[8]))


(11) -> (2), if ((filter(x[11], ys[11]) →* cons(x[2], ys[2])))


(11) -> (11), if ((filter(x[11], ys[11]) →* cons(x[11]a, ys[11]a)))


(12) -> (5), if ((zs[12]* zs[5])∧(x[12]* x[5])∧(y[12]* y[5])∧(isdiv(x[12], y[12]) →* FALSE))


(12) -> (7), if ((zs[12]* zs[7])∧(x[12]* x[7])∧(y[12]* y[7])∧(isdiv(x[12], y[12]) →* TRUE))


(14) -> (4), if ((-@z(y[14], x[14]) →* y[4])∧(x[14]* x[4]))


(14) -> (6), if ((-@z(y[14], x[14]) →* 0@z)∧(x[14]* x[6]))


(14) -> (8), if ((-@z(y[14], x[14]) →* y[8])∧(x[14]* x[8]))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 7 less nodes.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
IDP
                ↳ UsableRulesProof
              ↳ IDP
              ↳ IDP
              ↳ IDP

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_isdiv1(TRUE, x) → TRUE
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(TRUE, x, y, zs) → filter(x, zs)
Cond_nats1(TRUE, x, y) → nil
nats(x, y) → Cond_nats1(>@z(x, y), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
nats(x, y) → Cond_nats(>=@z(y, x), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
if(FALSE, x, y, zs) → cons(y, filter(x, zs))
Cond_nats(TRUE, x, y) → cons(x, nats(+@z(x, 1@z), y))
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
filter(x, nil) → nil
Cond_isdiv2(TRUE, x, y) → FALSE

The integer pair graph contains the following rules and edges:

(1): NATS(x[1], y[1]) → COND_NATS(>=@z(y[1], x[1]), x[1], y[1])
(0): COND_NATS(TRUE, x[0], y[0]) → NATS(+@z(x[0], 1@z), y[0])

(0) -> (1), if ((y[0]* y[1])∧(+@z(x[0], 1@z) →* x[1]))


(1) -> (0), if ((x[1]* x[0])∧(y[1]* y[0])∧(>=@z(y[1], x[1]) →* TRUE))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
                ↳ UsableRulesProof
IDP
                    ↳ IDPNonInfProof
              ↳ IDP
              ↳ IDP
              ↳ IDP

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(1): NATS(x[1], y[1]) → COND_NATS(>=@z(y[1], x[1]), x[1], y[1])
(0): COND_NATS(TRUE, x[0], y[0]) → NATS(+@z(x[0], 1@z), y[0])

(0) -> (1), if ((y[0]* y[1])∧(+@z(x[0], 1@z) →* x[1]))


(1) -> (0), if ((x[1]* x[0])∧(y[1]* y[0])∧(>=@z(y[1], x[1]) →* TRUE))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair NATS(x[1], y[1]) → COND_NATS(>=@z(y[1], x[1]), x[1], y[1]) the following chains were created:




For Pair COND_NATS(TRUE, x[0], y[0]) → NATS(+@z(x[0], 1@z), y[0]) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(>=@z(x1, x2)) = -1   
POL(TRUE) = -1   
POL(COND_NATS(x1, x2, x3)) = -1 + x3 + (-1)x2   
POL(+@z(x1, x2)) = x1 + x2   
POL(NATS(x1, x2)) = -1 + x2 + (-1)x1   
POL(FALSE) = -1   
POL(1@z) = 1   
POL(undefined) = -1   

The following pairs are in P>:

COND_NATS(TRUE, x[0], y[0]) → NATS(+@z(x[0], 1@z), y[0])

The following pairs are in Pbound:

COND_NATS(TRUE, x[0], y[0]) → NATS(+@z(x[0], 1@z), y[0])

The following pairs are in P:

NATS(x[1], y[1]) → COND_NATS(>=@z(y[1], x[1]), x[1], y[1])

At least the following rules have been oriented under context sensitive arithmetic replacement:

+@z1


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
                ↳ UsableRulesProof
                  ↳ IDP
                    ↳ IDPNonInfProof
IDP
                        ↳ IDependencyGraphProof
              ↳ IDP
              ↳ IDP
              ↳ IDP

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(1): NATS(x[1], y[1]) → COND_NATS(>=@z(y[1], x[1]), x[1], y[1])


The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
IDP
                ↳ UsableRulesProof
              ↳ IDP
              ↳ IDP

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_isdiv1(TRUE, x) → TRUE
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(TRUE, x, y, zs) → filter(x, zs)
Cond_nats1(TRUE, x, y) → nil
nats(x, y) → Cond_nats1(>@z(x, y), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
nats(x, y) → Cond_nats(>=@z(y, x), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
if(FALSE, x, y, zs) → cons(y, filter(x, zs))
Cond_nats(TRUE, x, y) → cons(x, nats(+@z(x, 1@z), y))
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
filter(x, nil) → nil
Cond_isdiv2(TRUE, x, y) → FALSE

The integer pair graph contains the following rules and edges:

(14): COND_ISDIV(TRUE, x[14], y[14]) → ISDIV(x[14], -@z(y[14], x[14]))
(4): ISDIV(x[4], y[4]) → COND_ISDIV(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)), x[4], y[4])

(4) -> (14), if ((x[4]* x[14])∧(y[4]* y[14])∧(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)) →* TRUE))


(14) -> (4), if ((-@z(y[14], x[14]) →* y[4])∧(x[14]* x[4]))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
              ↳ IDP
                ↳ UsableRulesProof
IDP
                    ↳ IDPNonInfProof
              ↳ IDP
              ↳ IDP

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(14): COND_ISDIV(TRUE, x[14], y[14]) → ISDIV(x[14], -@z(y[14], x[14]))
(4): ISDIV(x[4], y[4]) → COND_ISDIV(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)), x[4], y[4])

(4) -> (14), if ((x[4]* x[14])∧(y[4]* y[14])∧(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)) →* TRUE))


(14) -> (4), if ((-@z(y[14], x[14]) →* y[4])∧(x[14]* x[4]))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_ISDIV(TRUE, x[14], y[14]) → ISDIV(x[14], -@z(y[14], x[14])) the following chains were created:




For Pair ISDIV(x[4], y[4]) → COND_ISDIV(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)), x[4], y[4]) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(-@z(x1, x2)) = x1 + (-1)x2   
POL(>=@z(x1, x2)) = -1   
POL(0@z) = 0   
POL(ISDIV(x1, x2)) = -1 + x2 + (-1)x1   
POL(TRUE) = 0   
POL(&&(x1, x2)) = 0   
POL(FALSE) = 0   
POL(COND_ISDIV(x1, x2, x3)) = -1 + x3 + (-1)x2 + (-1)x1   
POL(undefined) = -1   
POL(>@z(x1, x2)) = -1   

The following pairs are in P>:

COND_ISDIV(TRUE, x[14], y[14]) → ISDIV(x[14], -@z(y[14], x[14]))

The following pairs are in Pbound:

COND_ISDIV(TRUE, x[14], y[14]) → ISDIV(x[14], -@z(y[14], x[14]))

The following pairs are in P:

ISDIV(x[4], y[4]) → COND_ISDIV(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)), x[4], y[4])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(FALSE, FALSE)1FALSE1
-@z1
&&(TRUE, TRUE)1TRUE1
&&(FALSE, TRUE)1FALSE1
&&(TRUE, FALSE)1FALSE1


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
              ↳ IDP
                ↳ UsableRulesProof
                  ↳ IDP
                    ↳ IDPNonInfProof
IDP
                        ↳ IDependencyGraphProof
              ↳ IDP
              ↳ IDP

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(4): ISDIV(x[4], y[4]) → COND_ISDIV(&&(>=@z(y[4], x[4]), >@z(x[4], 0@z)), x[4], y[4])


The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
              ↳ IDP
IDP
                ↳ UsableRulesProof
              ↳ IDP

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_isdiv1(TRUE, x) → TRUE
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(TRUE, x, y, zs) → filter(x, zs)
Cond_nats1(TRUE, x, y) → nil
nats(x, y) → Cond_nats1(>@z(x, y), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
nats(x, y) → Cond_nats(>=@z(y, x), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
if(FALSE, x, y, zs) → cons(y, filter(x, zs))
Cond_nats(TRUE, x, y) → cons(x, nats(+@z(x, 1@z), y))
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
filter(x, nil) → nil
Cond_isdiv2(TRUE, x, y) → FALSE

The integer pair graph contains the following rules and edges:

(7): IF(TRUE, x[7], y[7], zs[7]) → FILTER(x[7], zs[7])
(5): IF(FALSE, x[5], y[5], zs[5]) → FILTER(x[5], zs[5])
(12): FILTER(x[12], cons(y[12], zs[12])) → IF(isdiv(x[12], y[12]), x[12], y[12], zs[12])

(7) -> (12), if ((zs[7]* cons(y[12], zs[12]))∧(x[7]* x[12]))


(12) -> (5), if ((zs[12]* zs[5])∧(x[12]* x[5])∧(y[12]* y[5])∧(isdiv(x[12], y[12]) →* FALSE))


(5) -> (12), if ((zs[5]* cons(y[12], zs[12]))∧(x[5]* x[12]))


(12) -> (7), if ((zs[12]* zs[7])∧(x[12]* x[7])∧(y[12]* y[7])∧(isdiv(x[12], y[12]) →* TRUE))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
              ↳ IDP
              ↳ IDP
                ↳ UsableRulesProof
IDP
                    ↳ IDPNonInfProof
              ↳ IDP

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_isdiv2(TRUE, x, y) → FALSE
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
Cond_isdiv1(TRUE, x) → TRUE

The integer pair graph contains the following rules and edges:

(7): IF(TRUE, x[7], y[7], zs[7]) → FILTER(x[7], zs[7])
(5): IF(FALSE, x[5], y[5], zs[5]) → FILTER(x[5], zs[5])
(12): FILTER(x[12], cons(y[12], zs[12])) → IF(isdiv(x[12], y[12]), x[12], y[12], zs[12])

(7) -> (12), if ((zs[7]* cons(y[12], zs[12]))∧(x[7]* x[12]))


(12) -> (5), if ((zs[12]* zs[5])∧(x[12]* x[5])∧(y[12]* y[5])∧(isdiv(x[12], y[12]) →* FALSE))


(5) -> (12), if ((zs[5]* cons(y[12], zs[12]))∧(x[5]* x[12]))


(12) -> (7), if ((zs[12]* zs[7])∧(x[12]* x[7])∧(y[12]* y[7])∧(isdiv(x[12], y[12]) →* TRUE))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair IF(TRUE, x[7], y[7], zs[7]) → FILTER(x[7], zs[7]) the following chains were created:




For Pair IF(FALSE, x[5], y[5], zs[5]) → FILTER(x[5], zs[5]) the following chains were created:




For Pair FILTER(x[12], cons(y[12], zs[12])) → IF(isdiv(x[12], y[12]), x[12], y[12], zs[12]) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers with natural coefficients for non-tuple symbols [NONINF][POLO]:

POL(-@z(x1, x2)) = 0   
POL(Cond_isdiv2(x1, x2, x3)) = (2)x1   
POL(0@z) = 0   
POL(TRUE) = 0   
POL(&&(x1, x2)) = 0   
POL(FALSE) = 0   
POL(>@z(x1, x2)) = 0   
POL(isdiv(x1, x2)) = 0   
POL(cons(x1, x2)) = 1 + x2   
POL(>=@z(x1, x2)) = 0   
POL(Cond_isdiv(x1, x2, x3)) = (3)x1   
POL(Cond_isdiv1(x1, x2)) = 0   
POL(undefined) = 0   
POL(IF(x1, x2, x3, x4)) = -1 + x4 + (2)x2 + (-1)x1   
POL(FILTER(x1, x2)) = -1 + x2 + (2)x1   

The following pairs are in P>:

FILTER(x[12], cons(y[12], zs[12])) → IF(isdiv(x[12], y[12]), x[12], y[12], zs[12])

The following pairs are in Pbound:

IF(TRUE, x[7], y[7], zs[7]) → FILTER(x[7], zs[7])
IF(FALSE, x[5], y[5], zs[5]) → FILTER(x[5], zs[5])
FILTER(x[12], cons(y[12], zs[12])) → IF(isdiv(x[12], y[12]), x[12], y[12], zs[12])

The following pairs are in P:

IF(TRUE, x[7], y[7], zs[7]) → FILTER(x[7], zs[7])
IF(FALSE, x[5], y[5], zs[5]) → FILTER(x[5], zs[5])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(FALSE, FALSE)1FALSE1
Cond_isdiv(TRUE, x, y)1isdiv(x, -@z(y, x))1
Cond_isdiv1(TRUE, x)1TRUE1
-@z1
isdiv(x, y)1Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)1
isdiv(x, 0@z)1Cond_isdiv1(>@z(x, 0@z), x)1
&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
Cond_isdiv2(TRUE, x, y)1FALSE1
isdiv(x, y)1Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)1


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
              ↳ IDP
              ↳ IDP
                ↳ UsableRulesProof
                  ↳ IDP
                    ↳ IDPNonInfProof
                      ↳ AND
IDP
                          ↳ IDependencyGraphProof
                        ↳ IDP
              ↳ IDP

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_isdiv2(TRUE, x, y) → FALSE
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
Cond_isdiv1(TRUE, x) → TRUE

The integer pair graph is empty.
The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
              ↳ IDP
              ↳ IDP
                ↳ UsableRulesProof
                  ↳ IDP
                    ↳ IDPNonInfProof
                      ↳ AND
                        ↳ IDP
IDP
                          ↳ IDependencyGraphProof
              ↳ IDP

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_isdiv2(TRUE, x, y) → FALSE
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
Cond_isdiv1(TRUE, x) → TRUE

The integer pair graph contains the following rules and edges:

(7): IF(TRUE, x[7], y[7], zs[7]) → FILTER(x[7], zs[7])
(5): IF(FALSE, x[5], y[5], zs[5]) → FILTER(x[5], zs[5])


The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
              ↳ IDP
              ↳ IDP
IDP
                ↳ UsableRulesProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_isdiv1(TRUE, x) → TRUE
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(TRUE, x, y, zs) → filter(x, zs)
Cond_nats1(TRUE, x, y) → nil
nats(x, y) → Cond_nats1(>@z(x, y), x, y)
isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
nats(x, y) → Cond_nats(>=@z(y, x), x, y)
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)
if(FALSE, x, y, zs) → cons(y, filter(x, zs))
Cond_nats(TRUE, x, y) → cons(x, nats(+@z(x, 1@z), y))
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
filter(x, nil) → nil
Cond_isdiv2(TRUE, x, y) → FALSE

The integer pair graph contains the following rules and edges:

(11): SIEVE(cons(x[11], ys[11])) → SIEVE(filter(x[11], ys[11]))

(11) -> (11), if ((filter(x[11], ys[11]) →* cons(x[11]a, ys[11]a)))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
              ↳ IDP
              ↳ IDP
              ↳ IDP
                ↳ UsableRulesProof
IDP
                    ↳ IDPNonInfProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(TRUE, x, y, zs) → filter(x, zs)
Cond_isdiv1(TRUE, x) → TRUE
Cond_isdiv2(TRUE, x, y) → FALSE
filter(x, nil) → nil
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
if(FALSE, x, y, zs) → cons(y, filter(x, zs))
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)

The integer pair graph contains the following rules and edges:

(11): SIEVE(cons(x[11], ys[11])) → SIEVE(filter(x[11], ys[11]))

(11) -> (11), if ((filter(x[11], ys[11]) →* cons(x[11]a, ys[11]a)))



The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair SIEVE(cons(x[11], ys[11])) → SIEVE(filter(x[11], ys[11])) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers with natural coefficients for non-tuple symbols [NONINF][POLO]:

POL(-@z(x1, x2)) = 0   
POL(SIEVE(x1)) = -1 + x1   
POL(if(x1, x2, x3, x4)) = 1 + x4 + (2)x1   
POL(Cond_isdiv2(x1, x2, x3)) = 0   
POL(0@z) = 0   
POL(TRUE) = 0   
POL(&&(x1, x2)) = 0   
POL(FALSE) = 0   
POL(isdiv(x1, x2)) = 0   
POL(>@z(x1, x2)) = 0   
POL(cons(x1, x2)) = 1 + x2   
POL(>=@z(x1, x2)) = 0   
POL(Cond_isdiv(x1, x2, x3)) = (3)x1   
POL(filter(x1, x2)) = x2   
POL(Cond_isdiv1(x1, x2)) = 0   
POL(nil) = 0   
POL(undefined) = 0   

The following pairs are in P>:

SIEVE(cons(x[11], ys[11])) → SIEVE(filter(x[11], ys[11]))

The following pairs are in Pbound:

SIEVE(cons(x[11], ys[11])) → SIEVE(filter(x[11], ys[11]))

The following pairs are in P:
none

At least the following rules have been oriented under context sensitive arithmetic replacement:

Cond_isdiv(TRUE, x, y)1isdiv(x, -@z(y, x))1
Cond_isdiv1(TRUE, x)1TRUE1
filter(x, cons(y, zs))1if(isdiv(x, y), x, y, zs)1
if(TRUE, x, y, zs)1filter(x, zs)1
isdiv(x, 0@z)1Cond_isdiv1(>@z(x, 0@z), x)1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
isdiv(x, y)1Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)1
&&(FALSE, FALSE)1FALSE1
if(FALSE, x, y, zs)1cons(y, filter(x, zs))1
-@z1
isdiv(x, y)1Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)1
filter(x, nil)1nil1
&&(TRUE, TRUE)1TRUE1
Cond_isdiv2(TRUE, x, y)1FALSE1


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ AND
              ↳ IDP
              ↳ IDP
              ↳ IDP
              ↳ IDP
                ↳ UsableRulesProof
                  ↳ IDP
                    ↳ IDPNonInfProof
IDP
                        ↳ IDependencyGraphProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

isdiv(x, 0@z) → Cond_isdiv1(>@z(x, 0@z), x)
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(TRUE, x, y, zs) → filter(x, zs)
Cond_isdiv1(TRUE, x) → TRUE
Cond_isdiv2(TRUE, x, y) → FALSE
filter(x, nil) → nil
Cond_isdiv(TRUE, x, y) → isdiv(x, -@z(y, x))
isdiv(x, y) → Cond_isdiv(&&(>=@z(y, x), >@z(x, 0@z)), x, y)
if(FALSE, x, y, zs) → cons(y, filter(x, zs))
isdiv(x, y) → Cond_isdiv2(&&(>@z(x, y), >@z(y, 0@z)), x, y)

The integer pair graph is empty.
The set Q consists of the following terms:

sieve(nil)
Cond_isdiv(TRUE, x0, x1)
Cond_isdiv1(TRUE, x0)
filter(x0, cons(x1, x2))
if(TRUE, x0, x1, x2)
Cond_nats1(TRUE, x0, x1)
nats(x0, x1)
isdiv(x0, x1)
if(FALSE, x0, x1, x2)
Cond_nats(TRUE, x0, x1)
filter(x0, nil)
sieve(cons(x0, x1))
Cond_isdiv2(TRUE, x0, x1)
primes(x0)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.